Efficient Implementations of the Sum-Product Algorithm for Decoding LDPC
Codes

Xiao—Yu Hu, Evangelos Eleftheriou, Dieter—Michael Arnold, and Ajay Dholakia
IBM Research, Zurich Research Laboratory, CH-8803 Riischlikon, Switzerland

Abstract— Efficient implementations of the sum-product algorithm —mulation not only leads to reduced complexity LDPC decoding
I(_ﬁ"lf_;) fodf d“;,COdi(fl‘_?_F'e‘;W'de”S“y Pafityt;C:‘eCk (LDP%)ICOdSS US_{”Q r']ogi(algorithms that can be implemented with simple comparators
ikelihood ratios as messages between symbol and parity-chec : o
nodes are presented. Various reduced-complexity derivatives of the LLR- fand adders but also PrOV"?'eS the ab”'ty to compensate the loss
SPA are proposed. Both serial and parallel implementations are investi- in performance by using simple look-up tables or constant cor-
gated, leading to trellis and tree topologies, respectively. Furthermore, by rection terms.
exploiting the inherent robustness of LLRs, it is shown, via simulations, The remainder of the paper is Organized as follows. In Sec-
that coarse quantization tables are sufficient to implement complegore . ; T A g
operationswith negligible or no loss in performance. The unified treat- 0N Il, the SPA in the log-likelihood domain is described, and
ment of decoding techniques for LDPC codes presented here provides flex-the issues associated with a brute-force implementation are
ibility in selecting the appropriate design point in high-speed applications (iscussed. In Section I, a trellis topology for carrying out
from a performance, latency, and computational complexity perspective. . . . : .

the parity-check updates is derived. The core operation on this
trellis is the LLR of the exclusive OR (XOR) function of two

|. INTRODUCTION binary independent random variables [8], rather than the hy-

lterative decoding of binary low-density parity-checkperbolic tangent operation used in the brute-force implemen-
(LDPC) codes using the sum-product algorithm (SPA) has fi@tion. This core operation can either be implemented very
cently been shown to approach the capacity of the additi@ggcurately by using thenax* operation [9] or approximately
white Gaussian noise (AWGN) channel within 0.0045 dB [10Y using the so-called sigmin operation. In either case, the
3]. Efficient hardware implementation of the SPA has becorgBeck-node updates can be efficiently implemented on the trel-
a topic of increasing interest. The direct implementation of ttié by the well-known forward—backward algorithm. Section
original form of SPA has been shown to be sensitive to quant¥ is devoted to parallel processing, and a simple tree topol-
zation effects [4]. In addition, using likelihood ratios can sul®gy Wwith a new core operation is proposed. It is shown that
stantially reduce the required quantization levels [4]. A simplguch animplementation offers smaller latency compared to the
fication of the SPA that reduces the complexity of the paritgerial implementation. In practice, this core operation can be
check update at the cost of some loss in performance was g&glized by employing a simple eight-segment piecewise linear
posed in [5]. This simplification has been derived by operdtinction. In Section V, simulation results are presented, com-
ing in the log-likelihood domain. Recently, a new reducedraring the performance of the various alternative implementa-
complexity decoding algorithm that also operates entirely fiPns of the LLR-SPA. Finally, Section VI contains a summary
the log-likelihood domain was presented [6]. It bridges the g&b the results and conclusions.
in performance between the optimal SPA and the simplified ap-
proach in [5]. Finally, low complexity software and hardware
implementations of an iterative decoder for LDPC codes suit-A binary (N, K) LDPC code [1, 2] is a linear block code
able for multiple access applications were presented in [7]. described by a spardd x N parity-check matrixH, i.e., H

Here we present efficient implementations of the SPA am@s a low density of 1s. The parity-check matfixcan be
describe new reduced-complexity derivatives thereof. In oviewed as a bipartite graph with two kinds of noda&ssymbol
approach, log-likelihood ratios (LLR) are used as messages hedes corresponding to the encoded symbols, ngarity-
tween symbol and parity-check nodes. It is known that in pracheck nodes corresponding to the parity checks represented by
tical systems, using LLRs offers implementation advantagé®e rows of the matrixd. The connectivity of the bipartite
over using probabilities or likelihood ratios, because multiplgraph is such that the parity-check matfikis its incidence
cations are replaced by additions and the normalization steptrix. For regular LDPC codes, each symbol is connected to
is eliminated. The family of LDPC decoding algorithms pred parity-check nodes and each parity-check node is connected
sented here is called LLR-SPA. to d. symbol nodes. For irregular LDPC codels,and/ord,

The unified treatment of decoding techniques for LDP@&re not constant.
codes presented here provides flexibility in selecting the appro+ollowing a notation similar to [2, 5], leM (n) denote the
priate design point in high-speed applications from a perfaet of check nodes connected to symbol nadée., the po-
mance, latency, and computational complexity perspective.ditions of 1s in then-th column of the parity-check matrix
particular, serial and parallel implementations are investigated, and letA (m) denote the set of symbol nodes that partic-
leading to trellis and tree topologies, respectively. In boipate in them-th parity-check equation, i.e., the positions of
cases, specificore operationsimilar to the special operations1s in them-th row of H. Furthermore\ (m)\n represents
defined in the log-likelihood algebra of [8] are used. This fothe set\/(m), excluding then-th symbol node, and similarly,

1. SPAIN THE LOG-LIKELIHOOD DOMAIN

0-7803-7206-9/01/$17.00 © 2001 |IEEE
1036

M(n)\m represents the seél(n), excluding then-th check it, and ii) the implementation of the core operation needed for
node. computing these messages. For example, the core operation
In addition,q,, . (z), x € {0,1}, denotes the message thabf the check-node update computatiorStep (i)above is the
symbol noden sends to check node indicating the proba- hyperbolic tangent function, which is known to be difficult to
bility of symbol n being 0 or 1, based on all the checks inimplement in hardware. Furthermore, in a brute-force imple-
volving n exceptm. Similarly, ., (x), z € {0,1}, denotes mentation of the check-node update (d)(d. — 1) multipli-
the message that the-th check node sends to theth sym- cations are necessary per check node, with all multiplicands
bol node indicating the probability of symbalbeing 0 or 1, requiring the evaluation of the hyperbolic tangent core opera-
based on all the symbols checkedryexceptn. Finally,y = tion. Clearly, the higher the rate of the code, the higher the row
[y1,92,-..,yn] denotes the received word corresponding tegreed,, thus leading to a higher number of multiplications.
the transmitted codewond = [u1, ua, . .., un]. Therefore, the brute-force topology and its corresponding core
The LLR of a binary valued random varialileis defined as operation are not suited for high-speed digital applications.

P(U=0) 1. SERIAL IMPLEMENTATION: TRELLIS TOPOLOGY
PU=1) A. Check-Node Updates

whereP(U = z) denotes the probability that the random vari- Consider a particular check node with d. connections
ableU takes the value. Furthermore, let us define the LLRsfrom symbol nodes inV'(m) = (nq,ns,...,nq.). The in-
Anosm () L dg(@nosm(0) /anosm (1)) andAp_,(u,) L coming messages are the, s (tny)y Ang—sm (Uns), -,
108("m—sn (0) /Fmsn(1)). The LLR-SPA is then summarized na, +m(n,). The goal is to efficiently compute
as follows. the outgoing messaged\,—yn, (Uny)y Am—ns (Ung)s - -
Initialization: Each symbol node is assigned am poste- Am-—n, (tn,,)- N _ _
riori LLR L(uy) = log{P(u, = 0|yn)/P(un = 1jyn}. In Let us define two sets of auxiliary binary random vari-
case of equiprobable inputs on an AWGN chantigl,) = ablesfi = un,, fo = fi ® Unsy f3 = f2 & Ung,...,
2yn /02, whereo? is the noise variance. For every positiond. = fd._, @ un,_, @ndba, = un,_, ba._, = ba, @ Un,_ -1,

L(U) def:og

(m,n) such thatH,, , = 1, ..., b1 = b2 ® uy,, Whered denotes the binary XOR oper-
’ ation. It can easily be seen that for statistically independent
Anosm(Un) = L(uy), binary random variabl& andV" [8],
Amosn(un) = 0. L0 61 — 1o L D) ,
Step (i) (check-node updateéjor eachm, and for eachn € (UeV)=log elU) 4 eL(V) ~ 2)
N (m), compute Using (2) repeatedly, we can obtalr f,), L(f2), ..., L(fa.)

the knowledge oA, . (Un,)y Any—m (Uny)y -+ o Ang, sm (Uny,).
Using the parity-check node constrait,, ® un, ® ... &
U,) = 0, we obtainu,, = (fi-1 ® b;y1) for everyi €
{2,3,...,d. — 1}. Therefore, the outgoing message from the
check noden can be simply expressed as

and L(by), L(b2), ..., L(bg,) in arecursivemanner based on
Appsn(uyn) = 2tanh ! { H tanh[)\n,_)m(un,)/Q)]} .
n'eN(m)\n (1)

Step (ii) (symbol-node updateFor eachn, and for each
m € M(n), compute

Am"nz(unz) = L(fifl@bi+1)ﬂ i:2731"'ad6_11
)\n_wn(un) = L(Un) + Z Amz_m(un) Am—)nl ('Uznl) — L(bz),
m/eM(n)\m
Am—mdc (undc) = L(fa.-1)-)
For each, compute The total computational load consists of the forward recursive
A, () = L(uy, Ao (). computation ofL(f;), the backward recursive computation of
(un) = Llu)+m€%(n) —+n(tn) L(b;), and the final pairwise part in (3), which amounts to

3(d. —2) core operation of the type(U & V') per check node.
Step (iii) (decision): Quantizeti = [iiy, iy, ..., iy] such This should be comparedib(d.—1) hyperbolic tangent oper-
thatd, = 0 if A\,(uy) > 0, andd, = 1if \,(u,) < 0. ations for the check-node updates of the brute-force topology.
If aHT = 0, then halt the algorithm witlix as the decoder Clearly, the above procedure is exactly the forward-backward
output; otherwise go tStep (i) If the algorithm does not halt algorithm on a single-state trellis, as shown in Fig. 1. The se-
within some maximum number of iterations, then declare a déal nature of computations makes the latency in computing a

coder failure. check-node update of the ordetd,).

The check-node updates are computationally the most co
plex part of the LLR-SPA. Two issues influence their complex:
ity: i) the topology used in computing the messages that a pardn the log-likelihood domain, the symbol-node updates con-
ticular check node sends to the symbol nodes associated vgigt only of additions of incoming messages. It is more conve-

. Symbol-Node Updates

1036A

Therefore,

LUeV) = sign[L(U)lsign[L(V)] - min[|LU)], [LV)]]
+log[1 4 ULV
—log[e* V) 4 &L (V)] (5)

in which the termslog(l + e I1(W+LMV) and log(1 +
e~ ILW)—LVIy can be implemented by a look-up table. Fig.
2 shows a plot of the functiop(z) = log(1 + e~ *). A 3-

bit coarse quantization table ¢fz) is given in Table I. The
maximum approximation error is less than 0.05.

The functiong(z) can also be approximated more accurately
by a piece-wise linear function where the multiplying factors
are powers of two and therefore simple to implement in hard-
ware with shift operations. Table Il shows a piece-wise linear
approximation ofg(z) with only eight regions. Fig. 2 shows
the corresponding piece-wise linear approximation plot. As
Fig. 1. Serial configuration for computing check-node updates. ~ ¢an be seen, the piece-wise linear function offers almost a per-
fect match to the original function. In summary, the core op-
eration L(U & V') can be realized using four additions, one

unl unz u"d .

nient to compute the posterior LLR for the symhg), given
by TABLE |

s QUANTIZATION TABLE FOR g(z) = log(1 + e~ 171).
An(tn) = L(u,) + Z A —n(un),
i—ma | |z| | log(1 +e= "D | |zl | log(1 +e=*T) |
_ _ [0,0.196) 0.65 [1.05, 1.508) 0.25
whereA,,, . (uy), i = my,...,my, are the incoming LLRs [10.196, 0.433) 0.55 [1.508, 2.252) 0.15
from the parity-check node$t(n) = (my,ma, ..., mg,) con- | 10:433,0.71) 0.45 [2.252,4.5) 0.05
nected to the symbol node Then, the outgoing messages [0.71, 1.05) 0.35 [4.5, #o0) 0.0
from symbol node: are obtained as TABLE Il
A) = A1) = A, 6=, ma, PIECENISELINEAR FUNCTION ArROKIAT O PO
(4) g{x) =log(l +e .
The total computational load for a symbol-node update S [z[[log(T+e) [[af | log(i+e *) |
2d; + 1 additions. Note that this computational complexity [0,05) | —|z[=2-! +0.7 2.2,32) | —|z[*2- %+ 0.2375
figure includes the number of operations needed to obtain th@.5,1.6) | —[z[+2"Z+0.575 || [3.2,4.4) [—[z]*27° +0.1375
posterior LLR use irBtep (iii) of LLR-SPA. [1.6,2.2) | —[2[*27° +0.375 | [4.4, +x) 0.0
C. Efficient Implementation of Core OperatidflU & V') 07

T
— log(1+e ™)

— - piecewise linear approx.
— — table—lookup approx.

In this section, two efficient implementation versions of the
core operationL(U @ V) are described, both of which are os
amenable to efficient VLSI design.

The first version is analogous to thexx* operation used in ;5
turbo codes [9, 10]. By using the Jacobian logarithm twice, wi
obtain

0.4
| 4 eL+L(V)
LW eV) =log iy
= log[]_ + eL(U)JFL(V)] _ IOg[eL(U) + eL(V)]
= max[0, L{U) + L(V)] + log(1 + e 1LO+LO)]y

— max[L(U), L(V)] — log(1 + e~ IL@)=L(], 01

0.2

It can be shown that the following equality holds:

max[0, L(U) + L(V)] — max[L(U), L(V)]

= signlL(U)}sign[L(V)] - min{ L)}, IL(V)]. P92 The fneton() = bu(1 71

1036B

comparison, and twoorrections Each correction itself can be U
a table look-up operation or a linear function evaluation with aq
shift and a constant addition. '

It can readily be seen that the core operafigy & V') can
also be approximated as [8]

Uny

1+ eLU+L(V)

LUa®V) = log IO 5 oL
~ sign[L(U)]sign[L(V)] .
-minf|L(U)], [L(V)], ©) , _ % 2] N
which is called herein the sigmin approximation. The advan- T . @

tage of using the signxin approximation lies in its simplic-
ity. No additions are needed for check-node updates, merely
two-way comparisons, hence requiring a very small number of
logic gates.

Finally, the difference between the exattU @ V) op-
eration and its sigmain approximation is given by the term
log(1 + e [E@+LMWVIN _ Jog(1 4 e EHW)-LIVII) called the
correction factorin [6]. This correction factor can be described
by the bivariate function U,

Ung,

Fig. 3. Parallel configuration for computing check-node updates.

1 + e—\x+y|
s(z,y) = log 1o ool (7) , _ _ ,
te The operation at each node in the treelid/ ¢ V'), which

can be efficiently implementated using any of the alternatives
where the arguments andy represent the LLR.(U) and described in Section IlI-C. The latency in computing the LLR

L(V), respectively. It is shown in [6] that this correction fac- f S, is of orderO(log d,), resulting in a speed-up factor of

tor can be approximated by a single constant without incur; : X
ring any loss in performance with respect to the SPA. Clear ggcl/nl_(;g(dc)] compared to the serial trellis topology of Sec-

one can also use the functigiiz) shown in Fig. 2 instead
of the bivariate function (7), introduced in [6], to determine Having obtained the LLR afr,,, we now describe a simple

a correction factor. For example, let = L(U) + L(V) and and efficient way to compute the outgoing LLRS, ,,, (¢,).

22 = L(U) — L(V). Then, a simple rule similar to the one-t U consider

proposed in [6] is de de
L(Sm) = LO_ oup) =Lty ® Y ®uy,)
i=1 j=1,#1
1+ eL(Zj-;L j¢i®u"j)+L(u"i)

¢ if |z1]| < 2 and|za| > 2|4
g(z1) —g(z2) =< —c if |z2] < 2and|zy| > 2|z2| (8)
0 otherwise

= log C)

D5 i BUn ;) 4 oLlun;)
This means that the correction factor is zero when the values
g(x1) andg(z,) are close to each other. Otherwise, dependingie that the temL(Zj.;l 12 Dun;) is exactly equivalent to

Cortection fastor 5.8 posiie or & negatve nonsers value 1 OU190INg Message,, . (us) from check noden to all
P 9 e symbol nodes,,; € {un,,Un,,---,Un,, }, While L(uy,)

termined according to the signal-to-noise ratio. In this case, ; .
computational complexity of th&(U & V') core operation is a the Incoming Messa, —m (un;). Thus (9) becomes
single two-way comparison and an addition with a constant. Ao (tn;)FAn; s (1))

IV. PARALLEL IMPLEMENTATION: TREE TOPOLOGY ehmoni(Un;) 4 eAnimm(un;)

For applications with high throughput requirements, recusfter some algebra, we finally obtain
sive algorithms such as the forward—backward algorithm may

not be well suited. In this section, a simple tree topology that ernimm(Un) +L(Sm) _ 1
enables fast check-node updates is described. The symb@im—n: (Un;) =108 ———r5—re— -
node updates remain the same as in (4).

We begin by defining an auxiliary binary random variablg/e define
Sm = Zf;l @un,. The LLR of S,, at a particular check node J
m can be computed using the tree topology shown in Fig. 3. A, (un;) oL L(un, © Sp), i=1,...,d.. (12)

L(Sm). (10)

1036C

Clearly, for eachi € {1,2,...,d.}, the extrinsic informa-
tion Ay, (uy;) can be computed simultaneously by a par-
allel implementation of the new core operatibfu,, © S;,)

as shown in Fig. 3. Clearly, onlg. — 1 core operations of

type L(U @ V') andd, core operations of typ&(U &)

necessary for a particular check-node update in this parapﬁ:-

topology.
Observe that (10) can be written as

In (12) the calculation of the functioi(z) = log|e* — 1| is re-

_ log |e)\ni—>m(uni)+L(Sm) _ 1|

_ IOg |e>\ni_,m(uﬂi)—L(Sm) _]_|

—L(Snm).

(12)

V. SIMULATION RESULTS

Simulation results are presented for the following LDPC
decoding algorithms: the SPA, the LLR-SPA using the
trellis topology for the check-node updates (designated as
“L*_R—SPAl"), and the LLR-SPA using the tree topology for

e check-node updates (designated “LLR-SPA2"). Further-
more, the correction terfog(1 + e~ (TN Jog(1 +

e ILW)=LM)y in the core operatiol(U @ V') of the LLR-
SPA1 has been computed using either the look-up table shown
in Table | or the piece-wise linear function shown in Table II.
In addition, further simplifactions of the LLR-SPA1 have been
simulated in which the correction term in the core operation
L(UaV) is approximated by a fixed constant or eliminated en-
tirely. The last case corresponds to the afore-mentioned sign-

quired, whose plot is given in Fig. 4. As can be seen in Fig. thin approximation. Finally, the core operation involved in

the functionh(z) approaches-oc asz approaches zero. ThisLLR-SPA2 is implemented using the piece-wise linear func-
behavior makes it difficult to use a look-up table with a smafiion shown in Table Ill. The results are obtained via Monte
number of quantization levels for implementing the new cofgarlo simulations in which the maximum number of iterations
operationL(U &) . On the other hand;(z) can easily be is fixed to 80 in all cases.

approximated by a piece-wise linear function where the multi- Figs. 5 and 6 show the bit error rate performance of an

plying factors are powers of two and therefore simple to impléN = 180K

=@] LDPC code from [11] and afiV =

ment in hardware with shift operations. Table Ill is a very a&000, K = 3000] randomly constructed LDPC code, respec-
curate piece-wise linear approximationidfr) with only eight tively, assuming an AWGN channel. For both codes, we ob-
regions. Note that such a piece-wise linear approximationderve that at a bit error rate 05, the simple signain ap-
similar in implementation complexity to a 3-bit (eight quantiproximation suffers a performance penalty of 0.3 to 0.5 dB.
zation levels) table look-up. In summary, edefl/ &7) takes It appears that the loss in performance is greater as the num-
four additions and two linear function evaluations.

6

— logle*-1|

- - piecewise linear approx.

Fig. 4. The functiorh(z) = log |e* — 1].

TABLE Il
PIECEWISE LINEAR FUNCTION APPROXIMATION FORh(z) = log |e® — 1].
| [2] [Togle® —1] (2] [Togle® —1]]
[F00,-3) 0 [0,0.15) | 2%z 4 0
[3,-068) | —2=22 —0.75 || [0.15,0.4) | 2%z — 2.2
[0.68,-0.27)| —2z —1.04 [04,13) | 2z—14
[0.27,0.0) | —2%z — 3.56 [1.3, +0) z—0.1

ber of parity-check equations of the LDPC code increases. On
the other hand, all other reduced-complexity variants of the
LLR-SPA perform very close to the conventional SPA. In par-
ticular, the piece-wise linear approximations of the core opera-
tions in LLR-SPAL or LLR-SPA2 appear to suffer no loss (es-
sentially less than 0.05 dB) in performance even in the case of
the[N = 6000, K = 3000] LDPC code, which involves 3000
parity-check equations. Furthermore, as can be seen in Fig. 5,
the simple LLR-SPA1 algorithm that uses a constant correc-
tion term ¢ = 0.8) is also able to achieve the performance of
the conventional SPA, in particular at higher SNRs.

10°

— SPA

O+ LLR-SPAL, table look-up
— — LLR-SPAL, piece-wise linear
—— LLR-SPAL, sign—-min approx.
—— LLR-SPAL, constant(c=0.8) | 7
© - LLR-SPA2, piece-wise linear

Bit error rate

107

107° :
1 15

2 25 3
E/NZ(dB)

Fig. 5. Performance diV = B)(K =430 LDPC code from [11].

1036D

10° ; The core operations are somewhat different in the two cases.

—~+ SPA Nevertheless, the correction terms in these core operations can
O LLR-SPAL, table look-up
- - - LLR-SPAL piece-wiselinear| | D€ implemented via look-up tables or piece-wise linear func-
4 o LLR-SPAZ, pie e s tions, or even by using a single constant, facilitating simple

hardware design. Simulations results have shown that it is
possible to attain the performance of the conventional SPA ex-
tremely closely with a significant reduction in implementation
complexity.

Bit error rate
[
o

REFERENCES

[1] R. G. Gallager, “Low-density parity-check coddRE Trans. Inform.
Theory vol. IT-8, pp. 21-28, Jan. 1962.

[2] D. J. C. MacKay, “Good error-correcting codes based on very sparse
matrices,"IEEE Trans. Inform. Theoryol. 45, pp. 399-431, Mar. 1999.

[3] S.-Y. Chung, G. D. Forney, Jr., T. J. Richardson, and R. Urbanke, “On
the design of low-density parity-check codes within 0.0045 dB of the
Shannon limit,”IEEE Commun. Lettvol. 5, pp. 58-60, Feb. 2001.

1 1.05 15 1.75 2 505 [4] L. Ping and W. K. Leung, “Decoding low density parity check codes
E,/N, (dB) with finite quantization bits,2JEEE Commun. Lett.vol. 4, pp. 62-64,
Feb. 2000.
Fig. 6. Performance qfv 800, K = 3000] LDPC code. [5] M. P.C. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity it-

erative decoding of low density parity check codes based on belief prop-
agation,”IEEE Trans. Communvol. 47, pp. 673-680, May 1999.
[6] E. Eleftheriou, T. Mittelholzer and A. Dholakia, “Reduced-complexity
decoding algorithm for low-density parity-check codéEE Electronics
VI. CONCLUSIONS Letters vol. 37, pp. 102-104, Jan. 2001.
_ . . . 7] V. Sorokine, F.R. Kschischang, and S. Pasupathy, “Gallager codes for
Efficient implementations of the SPA for decoding LDP(L« CDMA applications — part Il: Implementations, complexity, and system
codes have been considered. A number of reduced-complexity capacity,"IEEE Trans. Communvol. 48, pp. 1818-1828, Nov. 2000.

; ; J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block
variants of the SPA based on using LLRs as messages beth@]enand convolutional codesiEEE Trans, Inform. Theorol. 42, pp. 429-

symbol nodes and check nodes have been investigated. In par- 445, Mar. 1996.

ticular, two different topologies for implementing the checki®] A. J. Viterbi, "An intuitive justification and a simplified implementation
of the MAP decoder for convolutional code$ZEE J. Sel. Areas Com-

node update, namely, trellis and tree topologies, have been pre- . =0\ 16 pp. 269-264, Feb, 1998,
sented. It was shown that the trellis topology would requif€o] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal

3(d. — 2) core operations for the check-node update with a la- and sub-optimal MAP decoding algorithms operating in the log domain,”
Proc. Intl. Commun. Conf. '95p. 1009-1013, June 1995.

tenCY of the ordeO(dc). On thg other hand, the tree tOpO|093{11] D.J.C. MacKay, “Online database of low-density parity-check codes,”
requires2(d, — 1) core operations of the check-node update ~ available at

with a Iatency of the Ord@(log dc)- http://wol.ra. phy. cam uk/ mackay/ codes/ data. ht m .

1036E

