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Abstract— Efficient implementations of the sum-product algorithm
(SPA) for decoding low-density parity-check (LDPC) codes using log-
likelihood ratios (LLR) as messages between symbol and parity-check
nodes are presented. Various reduced-complexity derivatives of the LLR-
SPA are proposed. Both serial and parallel implementations are investi-
gated, leading to trellis and tree topologies, respectively. Furthermore, by
exploiting the inherent robustness of LLRs, it is shown, via simulations,
that coarse quantization tables are sufficient to implement complexcore
operationswith negligible or no loss in performance. The unified treat-
ment of decoding techniques for LDPC codes presented here provides flex-
ibility in selecting the appropriate design point in high-speed applications
from a performance, latency, and computational complexity perspective.

I. I NTRODUCTION

Iterative decoding of binary low-density parity-check
(LDPC) codes using the sum-product algorithm (SPA) has re-
cently been shown to approach the capacity of the additive
white Gaussian noise (AWGN) channel within 0.0045 dB [1-
3]. Efficient hardware implementation of the SPA has become
a topic of increasing interest. The direct implementation of the
original form of SPA has been shown to be sensitive to quanti-
zation effects [4]. In addition, using likelihood ratios can sub-
stantially reduce the required quantization levels [4]. A simpli-
fication of the SPA that reduces the complexity of the parity-
check update at the cost of some loss in performance was pro-
posed in [5]. This simplification has been derived by operat-
ing in the log-likelihood domain. Recently, a new reduced-
complexity decoding algorithm that also operates entirely in
the log-likelihood domain was presented [6]. It bridges the gap
in performance between the optimal SPA and the simplified ap-
proach in [5]. Finally, low complexity software and hardware
implementations of an iterative decoder for LDPC codes suit-
able for multiple access applications were presented in [7].

Here we present efficient implementations of the SPA and
describe new reduced-complexity derivatives thereof. In our
approach, log-likelihood ratios (LLR) are used as messages be-
tween symbol and parity-check nodes. It is known that in prac-
tical systems, using LLRs offers implementation advantages
over using probabilities or likelihood ratios, because multipli-
cations are replaced by additions and the normalization step
is eliminated. The family of LDPC decoding algorithms pre-
sented here is called LLR-SPA.

The unified treatment of decoding techniques for LDPC
codes presented here provides flexibility in selecting the appro-
priate design point in high-speed applications from a perfor-
mance, latency, and computational complexity perspective. In
particular, serial and parallel implementations are investigated,
leading to trellis and tree topologies, respectively. In both
cases, specificcore operationssimilar to the special operations
defined in the log-likelihood algebra of [8] are used. This for-

mulation not only leads to reduced complexity LDPC decoding
algorithms that can be implemented with simple comparators
and adders but also provides the ability to compensate the loss
in performance by using simple look-up tables or constant cor-
rection terms.

The remainder of the paper is organized as follows. In Sec-
tion II, the SPA in the log-likelihood domain is described, and
the issues associated with a brute-force implementation are
discussed. In Section III, a trellis topology for carrying out
the parity-check updates is derived. The core operation on this
trellis is the LLR of the exclusive OR (XOR) function of two
binary independent random variables [8], rather than the hy-
perbolic tangent operation used in the brute-force implemen-
tation. This core operation can either be implemented very
accurately by using the������� operation [9] or approximately
by using the so-called sign-��� 	 operation. In either case, the
check-node updates can be efficiently implemented on the trel-
lis by the well-known forward–backward algorithm. Section
IV is devoted to parallel processing, and a simple tree topol-
ogy with a new core operation is proposed. It is shown that
such an implementation offers smaller latency compared to the
serial implementation. In practice, this core operation can be
realized by employing a simple eight-segment piecewise linear
function. In Section V, simulation results are presented, com-
paring the performance of the various alternative implementa-
tions of the LLR-SPA. Finally, Section VI contains a summary
of the results and conclusions.

II. SPA IN THE LOG-LIKELIHOOD DOMAIN

A binary 
���
���� LDPC code [1, 2] is a linear block code
described by a sparse����� parity-check matrix� , i.e., �
has a low density of 1s. The parity-check matrix� can be
viewed as a bipartite graph with two kinds of nodes:� symbol
nodes corresponding to the encoded symbols, and� parity-
check nodes corresponding to the parity checks represented by
the rows of the matrix� . The connectivity of the bipartite
graph is such that the parity-check matrix� is its incidence
matrix. For regular LDPC codes, each symbol is connected to���

parity-check nodes and each parity-check node is connected
to
���

symbol nodes. For irregular LDPC codes,
���

and/or
���

are not constant.
Following a notation similar to [2, 5], let��
�� � denote the

set of check nodes connected to symbol node� , i.e., the po-
sitions of 1s in the� -th column of the parity-check matrix� , and let!"
�#�� denote the set of symbol nodes that partic-
ipate in the# -th parity-check equation, i.e., the positions of
1s in the # -th row of � . Furthermore,!"
�#���$%� represents
the set!"
�#�� , excluding the� -th symbol node, and similarly,
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��
�� ��$%# represents the set��
�� � , excluding the# -th check
node.

In addition, &('*),+�
�-.� , -0/�1%23
(465 , denotes the message that
symbol node� sends to check node# indicating the proba-
bility of symbol � being 0 or 1, based on all the checks in-
volving � except# . Similarly, 78+9),':
�-.� , -�/;1%23
(465 , denotes
the message that the# -th check node sends to the� -th sym-
bol node indicating the probability of symbol� being 0 or 1,
based on all the symbols checked by# except� . Finally, <�=> ?�@ 
 ?*A 
(B(B(B(
 ?*C9D denotes the received word corresponding to
the transmitted codewordE�= > FG@ 
 F.A 
(B(B(B(
 F.C9D .

The LLR of a binary valued random variableH is defined asI 
JH,�LKNMPO =�QR*S T 
JHU=V2W�T 
JHU="4%� 

where

T 
JHX=Y-.� denotes the probability that the random vari-
able H takes the value- . Furthermore, let us define the LLRsZ '*),+�
 F '3�[KNMPO=\QR*S.
�&('*),+]
�2W��^�&('*),+]
P4%�_� and `a+9),':
 F '3�bKNMPO=Q R*S.
�78+9),'G
�2W��^%78+9),':
P4%�_� . The LLR-SPA is then summarized
as follows.

Initialization: Each symbol node� is assigned ana poste-
riori LLR

I 
 F 'c��=dQ R*S31 T 
 F 'e=f2hg ? '3��^ T 
 F 'e=i4�g ? 'h5 . In
case of equiprobable inputs on an AWGN channel,

I 
 F 'c�]=j ? '�^�k A , where k A is the noise variance. For every position
�#�
_� � such that��+bl '�="4 ,Z '*),+�
 F '3�m= I 
 F 'c�N
`a+9),':
 F '3�m=n23B
Step (i) (check-node update):For each# , and for each�;/!"
�#�� , compute

`a+9),':
 F '3�o= jqp �6	3r:s @�tu v w
'6x�y8z�{ +}|�~�' p �6	3r > Z ' x ),+]
 F ' x ��^ j � DN� �� B

(1)
Step (ii) (symbol-node update):For each� , and for each#�/���
�� � , computeZ '*),+�
 F '3��= I 
 F 'c� � �+ x y*��{ '6|�~�+ `a+ x ),':
 F '3�NB

For each� , computeZ 'G
 F '3��= I 
 F '3�G� �+by*��{ '6| `a+9),':
 F '3�NB
Step (iii) (decision):Quantize �E�= > �FG@ 
 �F.A 
(B(B(B(
 �F.C9D such

that �F '"=\2 if
Z ':
 F '3�;��2 , and �F '"=�4 if

Z 'G
 F '3����2 .
If �Eq�0��=�� , then halt the algorithm with�E as the decoder
output; otherwise go toStep (i). If the algorithm does not halt
within some maximum number of iterations, then declare a de-
coder failure.

The check-node updates are computationally the most com-
plex part of the LLR-SPA. Two issues influence their complex-
ity: i) the topology used in computing the messages that a par-
ticular check node sends to the symbol nodes associated with

it, and ii) the implementation of the core operation needed for
computing these messages. For example, the core operation
of the check-node update computation inStep (i)above is the
hyperbolic tangent function, which is known to be difficult to
implement in hardware. Furthermore, in a brute-force imple-
mentation of the check-node update (1),

��� 
 ���9� 4%� multipli-
cations are necessary per check node, with all multiplicands
requiring the evaluation of the hyperbolic tangent core opera-
tion. Clearly, the higher the rate of the code, the higher the row
degree

���
, thus leading to a higher number of multiplications.

Therefore, the brute-force topology and its corresponding core
operation are not suited for high-speed digital applications.

III. SERIAL IMPLEMENTATION: TRELLIS TOPOLOGY

A. Check-Node Updates

Consider a particular check node# with
���

connections
from symbol nodes in!"
�#���=�
�� @ 
_� A 
(B(B(B(
_� KN� � . The in-
coming messages are then

Z 'W�_),+]
 F 'W�N� , Z '6��),+�
 F '6�(�N
(B(B(B ,Z '*� � ),+�
 F '*� � � . The goal is to efficiently compute
the outgoing messages̀a+9),'W�%
 F 'W�N� , `a+9),'6�*
 F '6�(�N
(B(B(B ,`a+9),'*� � 
 F '*� � � .Let us define two sets of auxiliary binary random vari-
ables � @ = F 'W�%
�� A =�� @���F '6� , ����=�� A�� F '6¡�
(B(B(B ,� KN� =¢� KN�J£ � �eF '*� � , and ¤ KN� = F '*� � , ¤ KN�J£ �[=¢¤ KN� ��F '*� � s @ ,B(B(B(
�¤ @ =�¤ Ab�¥F 'W� , where

�
denotes the binary XOR oper-

ation. It can easily be seen that for statistically independent
binary random variableH and ¦ [8],I 
JH � ¦§�o=YQ R*S 4o��¨%© {«ª.|�¬ © {«­G|¨ © {«ª.| �e¨ © {«­:| B (2)

Using (2) repeatedly, we can obtain
I 
®� @ �N
 I 
®� A �N
(B(B(B(
 I 
®� KN� �and

I 
®¤ @ �N
 I 
®¤ A �N
(B(B(B(
 I 
®¤ KN� � in a recursivemanner based on
the knowledge of

Z 'W�_),+]
 F 'W�¯� , Z '6��),+�
 F '6�(�N
(B(B(B , Z '*� � ),+]
 F '*� � � .Using the parity-check node constraint
 F 'W� �UF '6� � B(B(B �F '*� � ��=\2 , we obtain
F '6°0=±
®��² s @³� ¤N² ¬ @ � for every ´�/1 j 
�µ3
(B(B(BN
 ���o� 465 . Therefore, the outgoing message from the

check node# can be simply expressed as`a+9),'6°N
 F '6°P�¶= I 
®��² s @�� ¤N² ¬ @ �N
;´·= j 
�µ3
(B(B(BN
 ����� 4*
`a+9),'W�%
 F 'W�N�¶= I 
®¤ A �N
`a+9),'*� � 
 F '*� � �¶= I 
®� KN� s @ �NB (3)

The total computational load consists of the forward recursive
computation of

I 
®��²®� , the backward recursive computation ofI 
®¤N²®� , and the final pairwise part in (3), which amounts toµ�
 ����� j � core operation of the type
I 
JH � ¦§� per check node.

This should be compared to
��� 
 ���8� 4%� hyperbolic tangent oper-

ations for the check-node updates of the brute-force topology.
Clearly, the above procedure is exactly the forward–backward
algorithm on a single-state trellis, as shown in Fig. 1. The se-
rial nature of computations makes the latency in computing a
check-node update of the order¸�
 ��� � .
B. Symbol-Node Updates

In the log-likelihood domain, the symbol-node updates con-
sist only of additions of incoming messages. It is more conve-

1036A



0

0

ba
ck

war
d

fo
rw

ar
d

¹�º¼»

¹6º¼½ ¾

¹ º_¿
¹6º ¿

¹6º¼À
¹6º¼½ ¾¹6º »

Fig. 1. Serial configuration for computing check-node updates.

nient to compute the posterior LLR for the symbol
F ' , given

by Z ':
 F '3�o= I 
 F '3� � +9�PÁ�² ÂG+Ã� `a+}°�),':
 F '3�N

where `a+}°�),'G
 F '3� , ´}=X# @ 
(B(B(B(
_# K Á are the incoming LLRs
from the parity-check nodes��
�� �o=Ä
�# @ 
_# A 
(B(B(B(
_# K Á � con-
nected to the symbol node� . Then, the outgoing messages
from symbol node� are obtained asZ '*),+}°¯
 F '3��= Z 'G
 F '3� � `a+}°�),'G
 F '3�N
�´L=Y# @ 
(B(B(B(
_# K Á B(4)
The total computational load for a symbol-node update isj ��� �Å4 additions. Note that this computational complexity
figure includes the number of operations needed to obtain the
posterior LLR use inStep (iii)of LLR-SPA.

C. Efficient Implementation of Core Operation
I 
JH � ¦Æ�

In this section, two efficient implementation versions of the
core operation

I 
JH � ¦Æ� are described, both of which are
amenable to efficient VLSI design.

The first version is analogous to the�����h� operation used in
turbo codes [9, 10]. By using the Jacobian logarithm twice, we
obtain I 
JH � ¦Æ�o=YQ R*S 4a��¨%© {«ª.|�¬ © {«­G|¨ © {«ª.| ��¨ © {«­G|=ÇQ R*S > 4a��¨ © {«ª.|�¬ © {«­:| D � Q R*S > ¨ © {«ª.| ��¨ © {«­G| D= ����� > 23
 I 
JH,�G� I 
®¦§� D �ÈQ R*Sh
P4}��¨ s·É © {«ª.|�¬ © {«­:| É �� ����� > I 
JH,�N
 I 
®¦Æ� D � Q R*Sh
P4a��¨ s·É © {«ª.| s © {«­:| É �NB
It can be shown that the following equality holds:����� > 23
 I 
JH,�G� I 
®¦Æ� D � ����� > I 
JH,�N
 I 
®¦§� D=¥Ê � S 	 > I 
JH,� D Ê � S 	 > I 
®¦Æ� DhË ��� 	 > g I 
JH,�(g 
%g I 
®¦§�(g D B

Therefore,I 
JH � ¦Æ�m=nÊ � S 	 > I 
JH,� D Ê � S 	 > I 
®¦§� DhË ��� 	 > g I 
JH,�(g 
%g I 
®¦Æ�(g D�0Q R*S > 4a��¨ © {«ª.|�¬ © {«­G| D� Q R*S > ¨ © {«ª.| ��¨ © {«­:| D 
 (5)

in which the terms Q R*Sh
P4��Ì¨ s·É © {«ª.|�¬ © {«­:| É � and Q R*S.
P40�¨ s·É © {«ª.| s © {«­:| É � can be implemented by a look-up table. Fig.
2 shows a plot of the functionÍ:
�-.��=fQ R*Sh
P4³�V¨ s·É ÎWÉ � . A 3-
bit coarse quantization table ofÍ:
�-.� is given in Table I. The
maximum approximation error is less than 0.05.

The functionÍ:
�-.� can also be approximated more accurately
by a piece-wise linear function where the multiplying factors
are powers of two and therefore simple to implement in hard-
ware with shift operations. Table II shows a piece-wise linear
approximation ofÍ:
�-.� with only eight regions. Fig. 2 shows
the corresponding piece-wise linear approximation plot. As
can be seen, the piece-wise linear function offers almost a per-
fect match to the original function. In summary, the core op-
eration

I 
JH � ¦Æ� can be realized using four additions, one

TABLE I

QUANTIZATION TABLE FOR Ï�Ð Ñ*Ò�ÓÕÔ ÖN×6Ð�Ø.Ù�Ú¯Û.Ü Ý%Ü Ò .Þ Ñ Þ Ô ÖN×�Ð�Ø.Ù�Ú¯Û.Ü Ý%Ü Ò Þ Ñ Þ Ô ÖN×�Ð�Ø:Ù�Ú¯Û.Ü Ý%Ü Ò
[0, 0.196) 0.65 [1.05, 1.508) 0.25

[0.196, 0.433) 0.55 [1.508, 2.252) 0.15
[0.433, 0.71) 0.45 [2.252, 4.5) 0.05
[0.71, 1.05) 0.35 [4.5, +ß ) 0.0

TABLE II

PIECEWISE LINEAR FUNCTION APPROXIMATION FORÏ�Ð Ñ*Ò�Ó�Ô ÖN×�Ð�Ø.Ù�Ú Û.Ü Ý%Ü Ò .Þ Ñ Þ Ô ÖN×�Ð�Ø:Ù�Ú¯Û.Ü Ý%Ü Ò Þ Ñ Þ Ô ÖN×�Ð�Ø:Ù�Ú¯Û.Ü Ý%Ü Ò
[0, 0.5) à Þ Ñ ÞPá:â ÛhãhÙ�ä8å æ [2.2, 3.2) à Þ Ñ ÞPá:â ÛcçGÙ�ä8å âNè æ�é

[0.5, 1.6) à Þ Ñ ÞPá:â Û3ê Ù�ä8å é¯æ�é [3.2, 4.4) à Þ Ñ ÞPá:â Û3ë Ù�ä8å Ø è æ�é
[1.6, 2.2) à Þ Ñ ÞPá:â Ûcì Ù�ä8å è æ�é [4.4, +ß ) 0.0

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
log(1+e−|x|)         
piecewise linear approx.
table−lookup approx.    

Fig. 2. The functionÏ�Ð Ñ*Ò�Ó�Ô ÖN×�Ð�Ø.Ù�Ú Û.Ü Ý%Ü Ò .
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comparison, and twocorrections. Each correction itself can be
a table look-up operation or a linear function evaluation with a
shift and a constant addition.

It can readily be seen that the core operation
I 
JH � ¦Æ� can

also be approximated as [8]

I 
JH � ¦Æ�¶=ÇQ R*S 4a��¨%© {«ª.|�¬ © {«­G|¨ © {«ª.| ��¨ © {«­G|í Ê � S 	 > I 
JH,� D Ê � S 	 > I 
®¦Æ� DË ��� 	 > g I 
JH,�(g 
%g I 
®¦Æ�(g D 
 (6)

which is called herein the sign-��� 	 approximation. The advan-
tage of using the sign-��� 	 approximation lies in its simplic-
ity. No additions are needed for check-node updates, merely
two-way comparisons, hence requiring a very small number of
logic gates.

Finally, the difference between the exact
I 
JH � ¦Æ� op-

eration and its sign-��� 	 approximation is given by the termQ R*S.
P49�Ä¨ s·É © {«ª.|�¬ © {«­:| É � � Q R*Sh
P49�Ä¨ s·É © {«ª.| s © {«­G| É � , called the
correction factorin [6]. This correction factor can be described
by the bivariate function

î 
�- 
 ? �o=YQ R*S 4a��¨ s·É Î ¬Gï É4a��¨ s·É Î6s ï É 
 (7)

where the arguments- and
?

represent the LLRs
I 
JH,� andI 
®¦Æ� , respectively. It is shown in [6] that this correction fac-

tor can be approximated by a single constant without incur-
ring any loss in performance with respect to the SPA. Clearly,
one can also use the functionÍ:
�-.� shown in Fig. 2 instead
of the bivariate function (7), introduced in [6], to determine
a correction factor. For example, let- @ = I 
JH,�q� I 
®¦§� and- A = I 
JH,� � I 
®¦Æ� . Then, a simple rule similar to the one
proposed in [6] is

Í:
�- @ � � Í:
�- A �o= tu vñð if g - @ g�� j
and g - A g�ò j g - @ g� ð if g - A g�� j
and g - @ g�ò j g - A g2 otherwiseB (8)

This means that the correction factor is zero when the valuesÍ:
�- @ � and Í:
�- A � are close to each other. Otherwise, depending
on the relative magnitude of the valuesÍ:
�- @ � and Í:
�- A � , the
correction factor is a positive or a negative nonzero value de-
termined according to the signal-to-noise ratio. In this case, the
computational complexity of the

I 
JH � ¦Æ� core operation is a
single two-way comparison and an addition with a constant.

IV. PARALLEL IMPLEMENTATION: TREE TOPOLOGY

For applications with high throughput requirements, recur-
sive algorithms such as the forward–backward algorithm may
not be well suited. In this section, a simple tree topology that
enables fast check-node updates is described. The symbol-
node updates remain the same as in (4).

We begin by defining an auxiliary binary random variableó +U=Uô KN�² Â @ �bF '6° . The LLR of
ó + at a particular check node# can be computed using the tree topology shown in Fig. 3.

õNö«÷

õ ö«ø ù

ú¯û

õNö ø ù

õ ö«÷
õNö�üõ ö ü

Fig. 3. Parallel configuration for computing check-node updates.

The operation at each node in the tree is
I 
JH � ¦Æ� , which

can be efficiently implementated using any of the alternatives
described in Section III-C. The latency in computing the LLR
of
ó + is of order ¸�
�Q R*S ��� � , resulting in a speed-up factor of¸ > ��� ^qQ R*S�
 ��� � D compared to the serial trellis topology of Sec-

tion III-A.
Having obtained the LLR of

ó + , we now describe a simple
and efficient way to compute the outgoing LLRs`a+9),'6°N
 F '6°_� .
Let us consider

I 
 ó +[�¶= I 
 KN�� ² Â @ �bF '6°¼�o= I 
 F '6° � KN��ý Â @ l ý�þÂG² �bF '�ÿ(�
=ÇQ R*S 4a��¨ © {�� � �ÿ������ ÿ���*°	��

� ÿ |�¬ © { 

� ° |¨ © {�� � �ÿ������ ÿ���*°	��

� ÿ | ��¨ © { 

� ° | B (9)

Note that the term
I 
 ô KN�ý Â @ l ý�þÂG² �bF '�ÿ(� is exactly equivalent to

the outgoing message`a+9),'6°N
 F '6°_� from check node# to all
the symbol nodes

F '6°§/ñ1 F 'W�(
 F '6��
(B(B(B(
 F '*� � 5 , while
I 
 F '6°¼�

is the incoming messag
Z '6°®),+]
 F '6°P� . Thus (9) becomes

I 
 ó +[�o=YQ R*S 4a��¨ ����� � ° { 

� ° |�¬�� � ° ��� { 

� ° |¨ ����� � ° { 

� ° | �e¨ � � ° ��� { 

� ° | B
After some algebra, we finally obtain

`a+9),'6°N
 F '6°P��=¥Q R*S ¨ � � ° ��� { 

� ° |�¬ © {�� � | � 4¨ � � ° ��� { 

� ° | s © {�� � | � 4 � I 
 ó +³�NB (10)

We define

`a+9),'6°¯
 F '6°P�LKNMPO= I 
 F '6°�� ó +³�N
;´·="4*
(B(B(B¯
 ��� B (11)
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Clearly, for each́e/�1W4*
 j 
(B(B(BN
 ��� 5 , the extrinsic informa-
tion `a+9),'6°¯
 F '6°P� can be computed simultaneously by a par-
allel implementation of the new core operation

I 
 F '6°�� ó +³�
as shown in Fig. 3. Clearly, only

���b� 4 core operations of
type

I 
JH � ¦§� and
���

core operations of type
I 
JH��Y¦Æ� are

necessary for a particular check-node update in this parallel
topology.

Observe that (10) can be written as

`a+9),'6°N
 F '6°P�¶=ÇQ R*S[g ¨ � � ° ��� { 

� ° |�¬ © {�� � | � 4�g� Q R*S[g ¨ � � ° ��� { 

� ° | s © {�� � | � 4�g� I 
 ó +³�NB (12)

In (12) the calculation of the function� 
�-.�o=YQ R*S[g ¨ Î � 4�g is re-
quired, whose plot is given in Fig. 4. As can be seen in Fig. 4,
the function� 
�-.� approaches

���
as - approaches zero. This

behavior makes it difficult to use a look-up table with a small
number of quantization levels for implementing the new core
operation

I 
JH��ñ¦Æ� . On the other hand,� 
�-.� can easily be
approximated by a piece-wise linear function where the multi-
plying factors are powers of two and therefore simple to imple-
ment in hardware with shift operations. Table III is a very ac-
curate piece-wise linear approximation of� 
�-.� with only eight
regions. Note that such a piece-wise linear approximation is
similar in implementation complexity to a 3-bit (eight quanti-
zation levels) table look-up. In summary, each

I 
JH ��¦Æ� takes
four additions and two linear function evaluations.

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

log|ex−1|              
piecewise linear approx.

Fig. 4. The function!�Ð Ñ*Ò�ÓÕÔ ÖN× Þ Ú Ý à�Ø Þ .
TABLE III

PIECEWISE LINEAR FUNCTION APPROXIMATION FOR!�Ð Ñ*Ò�Ó�Ô ÖN× Þ Ú�ÝqàÆØ Þ .Þ Ñ Þ Ô ÖN× Þ Ú�Ýoà�Ø Þ Þ Ñ Þ Ô ÖN× Þ Ú�Ýoà�Ø Þ
[- ß ,-3) 0 [0, 0.15)

â ç�Ñ}à#"%å ä
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[-0.68,-0.27) à â Ñ9à�ØNå $%" [0.4, 1.3)

â Ñ9à�ØNå "
[-0.27, 0.0) à â ì Ñ}à è å é'& [1.3, +ß ) Ñ9àÆä8å Ø

V. SIMULATION RESULTS

Simulation results are presented for the following LDPC
decoding algorithms: the SPA, the LLR-SPA using the
trellis topology for the check-node updates (designated as
“LLR-SPA1”), and the LLR-SPA using the tree topology for
the check-node updates (designated “LLR-SPA2”). Further-
more, the correction termQ R*Sh
P4³�V¨ s·É © {«ª.|�¬ © {«­:| É � � Q R*Sh
P4[�¨ s·É © {«ª.| s © {«­:| É � in the core operation

I 
JH � ¦Æ� of the LLR-
SPA1 has been computed using either the look-up table shown
in Table I or the piece-wise linear function shown in Table II.
In addition, further simplifactions of the LLR-SPA1 have been
simulated in which the correction term in the core operationI 
JH � ¦§� is approximated by a fixed constant or eliminated en-
tirely. The last case corresponds to the afore-mentioned sign-��� 	 approximation. Finally, the core operation involved in
LLR-SPA2 is implemented using the piece-wise linear func-
tion shown in Table III. The results are obtained via Monte
Carlo simulations in which the maximum number of iterations
is fixed to 80 in all cases.

Figs. 5 and 6 show the bit error rate performance of an> � =�482*2)(3
�� =+*62-, D
LDPC code from [11] and an

> � =. 2*2*23
�� =dµ*2*2*2 D randomly constructed LDPC code, respec-
tively, assuming an AWGN channel. For both codes, we ob-
serve that at a bit error rate of482 s0/ , the simple sign-��� 	 ap-
proximation suffers a performance penalty of 0.3 to 0.5 dB.
It appears that the loss in performance is greater as the num-
ber of parity-check equations of the LDPC code increases. On
the other hand, all other reduced-complexity variants of the
LLR-SPA perform very close to the conventional SPA. In par-
ticular, the piece-wise linear approximations of the core opera-
tions in LLR-SPA1 or LLR-SPA2 appear to suffer no loss (es-
sentially less than 0.05 dB) in performance even in the case of
the

> ��= . 2*2*23
���=Uµ*2*2*2 D LDPC code, which involves 3000
parity-check equations. Furthermore, as can be seen in Fig. 5,
the simple LLR-SPA1 algorithm that uses a constant correc-
tion term (ð§="23B ( ) is also able to achieve the performance of
the conventional SPA, in particular at higher SNRs.
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Fig. 5. Performance of1 2eÓ0Ø_äNä'35476YÓ�éNä%"%8 LDPC code from [11].
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Fig. 6. Performance of1 2eÓ &NäNäNä5496YÓ è äNäNä�8 LDPC code.

VI. CONCLUSIONS

Efficient implementations of the SPA for decoding LDPC
codes have been considered. A number of reduced-complexity
variants of the SPA based on using LLRs as messages between
symbol nodes and check nodes have been investigated. In par-
ticular, two different topologies for implementing the check-
node update, namely, trellis and tree topologies, have been pre-
sented. It was shown that the trellis topology would requireµ�
 ���q� j � core operations for the check-node update with a la-
tency of the ordeŗ�
 ��� � . On the other hand, the tree topology
requires

j 
 ���Ã� 4%� core operations of the check-node update
with a latency of the order¸�
�Q R*S ��� � .

The core operations are somewhat different in the two cases.
Nevertheless, the correction terms in these core operations can
be implemented via look-up tables or piece-wise linear func-
tions, or even by using a single constant, facilitating simple
hardware design. Simulations results have shown that it is
possible to attain the performance of the conventional SPA ex-
tremely closely with a significant reduction in implementation
complexity.
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