An Introduction to LDPC Codes*

William E. Ryan
Department of Electrical and Computer Engineering
The University of Arizona
Box 210104
Tucson, AZ 85721

August 19, 2003

1. Introduction

Low-density parity-check (LDPC) codes are a class of linear block codes which provide near-
capacity performance on a large collection of data transmission and storage channels while
simultaneously admitting implementable decoders. LDPC codes were first proposed by Gallager
in his 1960 doctoral dissertation [1] and was scarcely considered in the 35 years that followed.
One notable exception is the important work of Tanner in 1981 [2] in which Tanner generalized
LDPC codes and introduced a graphical representation of LDPC codes, now called Tanner
graphs. The study of LDPC codes was resurrected in the mid-1990’s with the work of MacKay,
Luby, and others [3], [4], [5] who noticed, apparently independently of the work of Gallager, the
advantages of linear block codes which possess sparse (low-density) parity-check matrices.

This tutorial chapter provides the foundations for the study and practice of LDPC codes.
We will start with the fundamental representations of LDPC codes via parity-check matrices
and Tanner graphs. Classification of LDPC ensembles via Tanner graph degree distributions
will be introduced, but we will only superficially cover the design of LDPC codes with optimal
degree distributions via constrained pseudo-random matrix construction. We will also review
some of the other LDPC code construction techniques which have appeared in the literature.
The encoding problem for such LDPC codes will be presented and certain special classes of
LDPC codes which resolve the encoding problem will be introduced. Finally, the iterative
message-passing decoding algorithm (and certain simplifications) which provides near-optimal
performance will be presented.

This work was funded by NSF grants CCR-9814472 and CCR-9979310, NASA grant NAG5-10643, and a
gift from the INSIC EHDR program.

2. Representations of LPDC Codes

2.1. Matrix Representation

Although LDPC codes can be generalized to non-binary alphabets, we shall consider only binary
LDPC codes for the sake of simpicity. Because LDPC codes form a class of linear block codes,
they may be described as a certain k-dimensional subspace C of the vector space F} of binary
n-tuples over the binary field Fy. Given this, we may find a basis B = {go, &1, ..., &1} which
spans C so that each ¢ € C may be written as ¢ = upgy + u181 + ... + ux_18,_1 for some {u;};
more compactly, ¢ = uG where u = [ug u; ... ux_1] and G is the so-called k x n generator matrix
whose rows are the vectors {g;} (as is conventional in coding, all vectors are row vectors). The
(n — k)-dimensional null space C1 of G comprises all vectors x € F} for which xGT = 0 and is
spanned by the basis B+ = {hy, hy, ..., h,_;_1}. Thus, for each c € C, ch! = 0 for all 5 or, more
compactly, cH" = 0 where H is the so-called (n — k) x n parity-check matrix whose rows are
the vectors {h;}, and is the generator matrix for the null space C*. The parity-check matrix H
is so named because it performs m = n — k separate parity checks on a received word.

A low-density parity-check code is a linear block code for which the parity-check matrix H
has a low density of 1’s. A regular LDPC code is a linear block code whose parity-check matrix
H contains exactly w, 1’s in each column and exactly w, = w.(n/m) 1’s in each row, where
w. << m (equivalently, w. << m). The code rate R = k/n is related to these parameters via
R =1—w./w, (this assumes H is full rank). If H is low density, but the number of 1’s in each
column or row is not constant, then the code is an irreqular LDPC' code. 1t is easiest to see the
sense in which an LDPC code is regular or irregular through its graphical representation.

2.2. Graphical Representation

Tanner considered LDPC codes (and a generalization) and showed how they may be represented
effectively by a so-called bipartite graph, now call a Tanner graph [2]. The Tanner graph of an
LDPC code is analogous to the trellis of a convolutional code in that it provides a complete
representation of the code and it aids in the description of the decoding algorithm. A bipartite
graph is a graph (nodes connected by edges) whose nodes may be separated into two types,
and edges may only connect two nodes of different types. The two types of nodes in a Tanner
graph are the wvariable nodes and the check nodes (which we shall call v-nodes and c-nodes,
respectively).! The Tanner graph of a code is drawn according to the following rule: check node
J is connected to variable node ¢ whenever element hj; in H is a 1. One may deduce from this
that there are m = n — k check nodes, one for each check equation, and n variable nodes, one
for each code bit ¢;. Further, the m rows of H specify the m c-node connections, and the n
columns of H specify the n v-node connections.

Ezample. Consider a (10, 5) linear block code with w, = 2 and w, = w.(n/m) = 4 with the

IThe nomenclature varies in the literature: variable nodes are also called bit or symbol nodes and check nodes
are also called function nodes.

following H matrix:

1111000000
1000111000
H=]10100100110
001 0O01O01Q01
0001001O0T1]1

The Tanner graph corresponding to H is depicted in Fig. 1. Observe that v-nodes cg, ¢, co,
and c3 are connected to c-node fy in accordance with the fact that, in the zeroth row of H,
hoo = ho1 = hoz = hos = 1 (all others are zero). Observe that analogous situations holds for
c-nodes f1, fo, f3, and f4 which corresponds to rows 1, 2, 3, and 4 of H, respectively. Note, as
follows from the fact that cH” = 0, the bit values connected to the same check node must sum
to zero. We may also proceed along columns to construct the Tanner graph. For example, note
that v-node ¢ is connected to c-nodes fy and f; in accordance with the fact that, in the zeroth
column of H, hggp =hipo=1. 1

Note that the Tanner graph in this example is regular: each v-node has two edge connections
and each c-node has four edge connections (that is, the degree of each v-node is 2 and the degree
of each c-node is 4). This is in accordance with the fact that w, = 2 and w, = 4. Is is also clear
from this example that mw, = nw..

For irregular LDPC codes, the parameters w, and w, are functions of the column and row
numbers and so such notation is not generally adopted in this case. Instead, it is usual in
the literature (following [7]) to specify the v-node and c-node degree distribution polynomials,
denoted by A(z) and p(z), respectively. In the polynomial

d'v
)\(,I) = Z)\dl'dil,
d=1

Aq denotes the fraction of all edges connected to degree-d v-nodes and d,, denotes the maximum
v-node degree. Similarly, in the polynomial

de
p(z) =" par®,
d=1

pq denotes the fraction of all edges connected to degree-d c-nodes and d. denotes the maximum

c-node degree. Note for the regular code above, for which w. = d, = 2 and w, = d. = 4, we

have A\(z) = z and p(z) = z°.

check fo f1 f2 f3 fa
nodes

variable

nodes O
Co C1 C2 C3 Ca Cs Cs C7 Cs Co

Fig. 1. Tanner graph for example code.

A cycle (or loop) of length v in a Tanner graph is a path comprising v edges which closes
back on itself. The Tanner graph in the above example possesses a length-6 cycle as exemplified
by the six bold edges in the figure. The girth v of a Tanner graph is the minimum cycle length of
the graph. The shortest possible cycle in a bipartite graph is clearly a length-4 cycle, and such
cycles manifest themselves in the H matrix as four 1’s that lie on the corners of a submatrix of
H. We are interested in cycles, particularly short cycles, because they degrade the performance
of the iterative decoding algorithm used for LDPC codes. This fact will be made evident in the
discussion of the iterative decoding algorithm.

3. LDPC Code Design Approaches

Clearly, the most obvious path to the construction of an LDPC code is via the construction of a
low-density parity-check matrix with prescribed properties. A large number of design techniques
exist in the literature, and we introduce some of the more prominent ones in this section, albeit
at a superficial level. The design approaches target different design criteria, including efficient
encoding and decoding, near-capacity performance, or low-error rate floors. (Like turbo codes,
LPDC codes often suffer from low-error rate floors, owing both to poor distance spectra and
weaknesses in the iterative decoding algorithm.)

3.1. Gallager Codes

The original LDPC codes due to Gallager [1] are regular LDPC codes with an H matrix of the
form

H,,
where the submatrices H; have the following structure. For any integers p and w, than greater
than 1, each submatrix H, is pu X pw, with row weight w, and column weight 1. The submatrix

H; has the following specific form: for ¢ = 1,2, ..., u, the i-th row contains all of its w, 1’s in
columns (i — 1)w, +1 to iw,. The other submatrices are simply column permutations of Hy. It is
evident that H is regular, has dimension pw, X pw,, and has row and column weights w, and w,,
respectively. The absence of length-4 cycles in H is not guaranteed, but they can be avoided via
computer design of H. Gallager showed that the ensemble of such codes has excellent distance
properties provided w, > 3 and w, > w,. Further, such codes have low-complexity encoders
since parity bits can be solved for as a function of the user bits via the parity-check matrix [1].

Gallager codes were generalized by Tanner in 1981 [2] and were studied for application to

code-division multiple-access communication channel in [9]. Gallager codes were extended by
MacKay and others [3], [4].

3.2. MacKay Codes

MacKay had independently discovered the benefits of designing binary codes with sparse H
matrices and was the first to show the ability of these codes to perform near capacity limits [3],
[4]. MacKay has archived on a web page [10] a large number of LPDC codes he has designed
for application to data communication and storage, most of which are regular. He provided in
[4] algorithms to semi-randomly generate sparse H matrices. A few of these are listed below in
order of increasing algorithm complexity (but not necessarily improved performance).

1. H is created by randomly generating weight-w, columns and (as near as possible) uniform
row weight.

2. H is created by randomly generating weight-w,. columns, while ensuring weight-w, rows,
and no two columns having overlap greater than one.

3. H is generated as in 2, plus short cycles are avoided.

4. H is generated as in 3, plus H = [H; Hs] is constrained so that H, is invertible (or at
least H is full rank).

One drawback of MacKay codes is that they lack sufficient structure to enable low-complexity
encoding. Encoding is performed by putting H in the form [PT I] via Gauss-Jordan elimination,
from which the generator matrix can be put in the systematic form G = [I P]. The problem
with encoding via G is that the submatrix P is generally not sparse so that, for codes of length
n = 1000 or more, encoding complexity is high. An efficient encoding technique employing only
the H matrix was proposed in [6].

3.3. Irregular LDPC Codes

Richardson et al. [7] and Luby et al. [8] defined ensembles of irregular LDPC codes parame-
terized by the degree distribution polynomials A\(x) and p(z) and showed how to optimize these
polynomials for a variety of channels. Optimality is in the sense that, assuming message-passing
decoding (described below), a typical code in the ensemble was capable of reliable communica-
tion in worse channel conditions than codes outside the ensemble are. The worst-case channel
condition is called the decoding threshold and the optimization of A(z) and p(x) is found by a
combination of a so-called density evolution algorithm and an optimization algorithm. Density

evolution refers to the evolution of the probability density functions (pdf’s) of the various quan-
tities passed around the decoder’s Tanner graph. The decoding threshold for a given A(x)-p(z)
pair is determined by evaluation the pdf’s of computed log-likelihood ratios (see the next section)
of the code bits. The separate optimization algorithm optimizes over the A(x)-p(z) pairs.

Using this approach an irregular LDPC code has been designed whose simulated performance
was within 0.045 dB of the capacity limit for a binary-input AWGN channel [11]. This code
had length n = 107 and rate R = 1/2. It is generally true that designs via density evolution are
best applied to codes whose rate is not too high (R < 3/4) and whose length is not too short
(n 2 5000). The reason is that the density evolution design algorithm assumes n — oo (hence,
m — o0), and so A(z)-p(z) pairs which are optimal for very long codes, will not be optimal
for medium-length and short codes. As discussed in [12], [13], [14], [15], such A(z)-p(z) pairs
applied to medium-length and short codes gives rise to a high error-rate floor.

Finally, we remark that, as for the MacKay codes, these irregular codes do not intrinsically
lend themselves to efficient encoding. However, as mentioned above, Richardson and Urbanke
[6] have proposed algorithms for achieving linear-time encoding for these codes.

3.4. Finite Geometry Codes

In [16], [17], regular LDPC codes are designed using old-fashioned textbook [18] techniques based
on finite geometries. The resulting LDPC codes fall into the cyclic and quasi-cyclic classes of
block codes and lend themselves to simple encoder implementation via shift-register circuits.
The cyclic finite geometry codes tend to have relatively large minimum distances, but the quasi-
cyclic codes tend to have somewhat small minimum distances. Also, short LDPC codes (n on
the order of 200 bits) designed using these techniques are generally better than short LDPC
codes designed using pseudo-random H matrices.

The cyclic finite geometry codes have the drawback that the parity-check matrix used in
decoding is n x n instead of (n — k) x n. (It is possible to choose an (n — k) x n submatrix of
the n x n matrix to decode, but the loss in performance is generally non-negligible.) The n x n
matrix is circulant, with its first row equal to a certain incidence vector [16]. Another drawback
is that the values of w, and w, are relatively large which is undesirable since the complexity
of the iterative message-passing decoder is proportional to these values. One final drawback is
that there is not a flexibility in the choice of length and rate, although this issue can be dealt
with by code shortening and puncturing.

3.5. RA, IRA, and elRA Codes

A type of code, called a repeat-accumulate (RA) code, which has the characteristics of both
serial turbo codes and LDPC codes, was proposed in [20]. The encoder for an RA code is shown
in Fig. 2 where it is seen that user bits are repeated (2 or 3 times is typical), permuted, and
then sent through an accumulator (differential encoder). These codes have been shown to be
capable of operation near capacity limits, but they have the drawback that they are naturally
low rate (rate 1/2 or lower).

The RA codes were generalized in such a way that some bits were repeated more than others
yielding irregular repeat-accumulate (IRA) codes [21]. As shown in Fig. 2, the IRA encoder
comprises a low-density generator matrix, a permuter, and an accumulator. Such codes are

capable of operation even closer to theoretical limits than RA codes, and they permit higher
code rates. A drawback to IRA codes is that they are nominally non-systematic codes, although
they be put in a systematic form, but it is at the expense of greatly lowering the rate as depicted
in Fig. 2.

Yang and Ryan [13], [14], [15] have proposed a class of efficiently encodable irregular LDPC
codes which might be called extended IRA (eIRA) codes. (These codes were independently
proposed in [22].) The elRA encoder is shown in Fig. 2. Note that the eIRA encoder is
systematic and permits both low and high rates. Further, encoding can be efficiently performed
directly from the H matrix which possesses an m x m submatrix which facilitates computation
of the parity bits from the user bits [22], [15].

RA
w
u—}repeat_pl'l—bl_DlB—b
1xn
IRA
s S mmmm oo l'J'P
u' 1 |w
—6 [™Mb >
kxn
elRA
u
AR pu i IENLR
g Nali g 10D |1 x (nk)
Kx (nk)

Fig. 2. Encoders for the repeat-acccumulate (RA), the irregular RA (IRA) code, and the
extended IRA code (eIRA).

3.6. Array Codes

Fan has shown that a certain class of codes called array codes can be viewed as LDPC codes
and thus can be decoded with a message passing algorithm [23], [24]. Subsequent to Fan’s work,
Eleftheriou and Olger [25] proposed a modified array code employing the following H matrix
format

0 I « al=2 o=t k=2
H — 0 0 _[“ e OéQ(j—S) aQ(j_Q) “ e Q2(k_3) (31)
00 .- 0 I ol ... oli-D—d)

where k£ and j are two integers such that k,j < p where p denotes a prime number. [is the
p X p identity matrix, O the p x p null matrix, and a a p X p permutation matrix representing

a single left- or right-cyclic shift. The upper triangular nature of H guarantees encoding linear
in the codeword length (encoding is essentially the same as for eIRA codes).

These modified array codes have very low error rate floors, and both low- and high-rate
codes may be designed. However, as is clear from the description of H above, only selected code
lengths and rates are available.

3.7. Combinatorial LDPC Codes

In view of the fact that LDPC codes may be design by constrained random construction of H
matrices, it is not difficult to imagine that good LDPC codes may be designed via the application
of combinatorial mathematics. That is, design constraints (such as no cycles of length four)
applied to an H matrix of size (n — k) X n may be cast as a problem in combinatorics. Several
researchers have successfully approached this problem via such combinatorial objects as Steiner
systems, Kirkman systems, and balanced incomplete block designs [26], [27], [28], [29], [16].

4. Iterative Decoding Algorithms

4.1. Overview

In addition to introducing LDPC codes in his seminal work in 1960 [1], Gallager also provided
a decoding algorithm that is typically near optimal. Since that time, other researchers have
independently discovered that algorithm and related algorithms, albeit sometimes for differ-
ent applications [4], [30]. The algorithm iteratively computes the distributions of variables in
graph-based models and comes under different names, depending on the context. These names
include: the sum-product algorithm (SPA), the belief propagation algorithm (BPA), and the
message passing algorithm (MPA). The term “message passing” usually refers to all such itera-
tive algorithms, including the SPA (BPA) and its approximations.

Much like optimal (maximum a posteriori, MAP) symbol-by-symbol decoding of trellis codes,
we are interested in computing the a posteriori probability (APP) that a given bit in the
transmitted codeword ¢ = [¢g ¢ ... ¢, 1] equals 1, given the received word y = [yo y1 - Yn_1]-
Without loss of generality, let us focus on the decoding of bit ¢; so that we are interested in
computing the APP

Pr(c;=1]y)
or the APP ratio (also called the likelihood ratio, LR)
A Pr(c; =0]y)

) = e =11y)

Later we will extend this to the more numerically stable computation of the log-APP ratio, also
called the log-likelihood ratio (LLR):

L(c;) 2 log (M)

Pr(c; =1]y)

where here and in the sequel the natural logarithm is assumed.

The MPA for the computation of Pr(c; = 1 | y), l(¢;), or L(¢;) is an iterative algorithm
which is based on the code’s Tanner graph. Specifically, we imagine that the v-nodes represent
processors of one type, c-nodes represent processors of another type, and the edges represent
message paths. In one half iteration, each v-node processes its input messages and passes its
resulting output messages up to neighboring c-nodes (two nodes are said to be neighbors if they
are connected by an edge). This is depicted in Fig. 3 for the message mqp2 from v-node ¢ to
c-node fo (the subscripted arrow indicates the direction of the message, keeping in mind that
our Tanner graph convention places c-nodes above v-nodes). The information passed concerns
Pr(co = b | input messages), b € {0, 1}, the ratio of such probabilities, or the logarithm of the
ratio of such probabilities. Note in the figure that the information passed to c-node f; is all the
information available to v-node ¢y from the channel and through its neighbors, excluding c-node
f2; that is, only extrinsic information is passed. Such extrinsic information my;; is computed
for each connected v-node/c-node pair ¢;/ f; at each half-iteration.

fo f1 f2

Co
Yo (channel sample)

Fig. 3. Subgraph of a Tanner graph corresponding to an H matrix whose zeroth column is
11100 ...0]7. The arrows indicate message passing from node ¢y to node fs.

In the other half iteration, each c-node processes its input messages and passes its resulting
output messages down to its neighboring v-nodes. This is depicted in Fig. 4 for the message
myo4 from c-node f; down to v-node ¢4. The information passed concerns Pr(check equation f
is satisfied | input messages), b € {0, 1}, the ratio of such probabilities, or the logarithm of the
ratio of such probabilities. Note, as for the previous case, only extrinsic information is passed to
v-node ¢4. Such extrinsic information m,;; is computed for each connected c-node/v-node pair
fi/ci at each half-iteration.

fo

Co C1 C Cy4

Fig. 4. Subgraph of a Tanner graph corresponding to an H matrix whose zeroth row is
[1110100...0]7. The arrows indicate message passing from node f; to node c;.

After a prescribed maximum number of iterations or after some stopping criterion has been
met, the decoder computes the APP, the LR, or the LLR from which decisions on the bits ¢;
are made. One example stopping criterion is to stop iterating when ¢H’ = 0, where & is a
tentatively decoded codeword.

The MPA assumes that the messages passed are statistically independent throughout the
decoding process. When the y; are independent, this independence assumption would hold true
if the Tanner graph possessed no cycles. Further, the MPA would yield exact APPs (or LRs or
LLRs, depending on the version of the algorithm) in this case [30]. However, for a graph of girth
7, the independence assumption is only true up to the y/2-th iteration, after which messages
start to loop back on themselves in the graph’s various cycles. Still, simulations have shown
that the message passing algorithm is generally very effective provided length-four cycles are
avoided. Lin et al. [19] showed that some configurations of length-four cycles are not harmful.
It was shown in [31] how the message-passing schedule described above and below (the so-called
flooding schedule) may be modified to mitigate the negative effects of short cycles.

In the remainder of this section we present the “probability domain” version of the SPA
(which computes APPs) and its log-domain version, the log-SPA (which computes LLRs), as
well as certain approximations. Our treatment considers the special cases of the binary erasure
channel (BEC), the binary symmetric channel (BSC), and the binary-input AWGN channel
(BILAWGNC).

4.2. Probability-Domain SPA Decoder

We start by introducing the following notation:

V; = {v-nodes connected to c-node f;}

e V;\i = {v-nodes connected to c-node f;}\{v-node ¢;}

e C; = {c-nodes connected to v-node c¢;}

e C;\j = {c-nodes connected to v-node ¢;}\{c-node f;}

e M,(~ i) = {messages from all v-nodes except node ¢;}

o M.(~ j) = {messages from all c-nodes except node f;}

o P,=Pr(c;=1]y)

e S; = event that the check equations involving ¢; are satisfied

o ¢(b) =Pr(c; =0b|S;,yi, Mc(~ 7)), where b € {0,1}. For the APP algorithm presently
under consideration, mq;; = ¢;;(b); for the LR algorithm, mq;; = ¢;;(0)/qi;(1); and for the
LLR algorithm, my;; = log [¢;;(0)/¢:;(1)].

e 7;(b) = Pr(check equation f; is satisfied | ¢; = b, M,(~ 4)), where b € {0,1}. For the
APP algorithm presently under consideration, m,;; = r;;(b); for the LR algorithm, m,;; =
7;1(0)/7;(1); and for the LLR algorithm, m,;; = log [r;;(0)/7;:(1)].

Note that the messages ¢;;(b), while interpreted as probabilities here, are random variables
(rv’s) as they are functions of the rv’s y; and other messages which are themselves rv’s. Similarly,
by virtue of the message passing algorithm, the messages r;;(b) are rv’s.

Consider now the form of ¢;;(0) which, given our new notation and the independence as-
sumption, we may express as (see Fig. 5)

¢;;(0) = Pr(c;=0/]y;S; M~ j))
= (1=PF)Pr(Si|ci=0,y;, Mc(~ j)) /Pr(Si)
= K;(1-P)] rn(0) (4.1)

j’eCi\j
where we used Bayes’ rule twice to obtain the second line and the independence assumption to
obtain the third line. Similarly,

g:;(1) = Ki P [] rm(1 (4.2)
J'eCi\j

The constants K;; are chosen to ensure that ¢;;(0) + ¢;;(1) = 1.

rii(b)

Fig. 5. Illustration of message passing half-iteration for the computation of g;;(b).

To develop an expression for the r;;(b), we need the following result.

Result 1. (Gallager [1]) Consider a sequence of M independent binary digits a; for which
Pr(a; = 1) = p;. Then the probability that {a;}?L; contains an even number of 1’s is

= + H —2p;) . (4.3)
Proof: Induction on M. B

In view of this result, together with the correspondence p; <+ ¢;;(1), we have (see Fig. 6)

1 1

r5i(0) = 5t5 IT (1 —2gs;(1)) (4.4)

S AY
since, when ¢; = 0, the bits {c; : ¢’ € V;\i} must contain an even number of 1’s in order for

check equation f; to be satisfied. Clearly,

rii(b)
0 (0) G
Fig. 6. Illustration of message passing half-iteration for the computation of 7;;(b).

The MPA for the computation of the APP’s is initialized by setting ¢;;(b) = Pr(¢; =0 | y;)
for all 7, j for which h;; = 1 (that is, ¢;;(1) = P; and ¢;;(0) = 1 — F;). Here, y; represents channel
symbol that was actually received (i.e., it is a not variable here). We consider the following
special cases.

BEC. In this case, y; € {0,1, E'} where E is the erasure symbol, and we define 6 = Pr(y; =
E | ¢; = b) to be the erasure probability. Then it is easy to see that

1 when y; =0
Pric,=0y;)= 0 when y; = b°
1/2 wheny, =FE

where b° represents the complement of b.
BSC. In this case, y; € {0,1} and we define ¢ = Pr(y; = b° | ¢; = b) to be the error
probability. Then it is obvious that

1—¢ wheny, =0
e when y; = b°

Pr(e =) - |

BI-AWGNC. We first let x; = 1—2¢; be the i-th transmitted binary value; note z; = +1(—1)
when ¢; = 0(1). We shall use z; and ¢; interchangeably hereafter. Then the i-th received sample
is y; = x; + n; where the n; are independent and normally distributed as 7 (0,02) . Then it is
easy to show that

Pr(z;=z|y) = [1 + exp (—ny/o-Q)}*l
where z € {£1}.

Summary of the Probability-Domain SPA Decoder

1. Fori=0,1,...,n—1,set P, = Pr(¢; = 1| y;) where y; is the i-th received channel symbol.
Then set ¢;;(0) =1 — P, and ¢,;;(1) = P, for all 4, j for which h;; = 1.

2. Update {r;;(b)} using equations (4.4) and (4.5).
3. Update {g;:(b)} using equations (4.1) and (4.2). Solve for the constants Kj;.
4. Fort=0,1,...,n — 1, compute

Qi(0) = K; (1= P,)] r5(0) (4.6)

JjeC;

and
Qi(1) = K; P I r(1). (4.7)

J€C;

where the constants K; are chosen to ensure that @Q;(0) + @Q;(1) = 1.

5. For1=0,1,....,n — 1, set
. _{ Lif Q;(1) > Qs(0)

0 else

If é¢H” = 0 or the number of iterations equals the maximum limit, stop; else, go to Step
2.

Remarks. This algorithm has been presented for pedagogical clarity, but may be adjusted
to optimize the number of computations. For example, Step 4 may be computed before Step
3 and Step 3 may be replaced with the simple division ¢;;(b) = K;;Q;(b)/7;:(b). We note also
that, for good codes, this algorithm is able to detect an uncorrected codeword with near-unity
probability (Step 5), unlike turbo codes [4].

4.3. Log-Domain SPA Decoder

As with the probability-domain Viterbi and BCJR algorithms, the probability-domain SPA
suffers because multiplications are involved (additions are less costly to implement) and many
multiplications of probabilities are involved which could become numerically unstable. Thus, as
with the Viterbi and BCJR algorithms, a log-domain version of the SPA is to be preferred. To
do so, we first define the following LLRs:

Pr(c; =0)
L¢;) =1
o) = e (Pr (e =11y)
L(ry) = log< J)
’ rji (1)
45 (0)
L(gi;) = log ()
’ g5 (1)
Qi (0))
L Qz = lo
(Q:) g (0.)
The initialization steps for the three channels under consideration thus become:
+OO) Yi = 0
L(gi;) = L(e) =1 —o0, yi=1 (BEC) (4.8)
07 Yi = E

— &

Ligy) = L(ci):(—l)yilog<1) (BSC)
L(g:;;) = L(c;) =2y;/0* (BI-AWGNC)

For Step 1, we first replace 7;;(0) with 1 —r;;(1) in (4.5) and rearrange it to obtain

1—2r;(1) = J] (1-2¢;(0)).

ieVi\i

Now using the fact that tanh [% log (po/ pl)} = po — p1 = 1 — 2p;, we may rewrite the equation
above as

tanh <%L(Tﬁ)) —] tanh (%L(qi,j)> (4.9)

'eVi\i

The problem with these expressions is that we are still left with a product and the complex tanh
function. We can remedy this as follows [1]. First, factor L(g;;) into its sign and magnitude:

L(gij) = B
Q5 = Sig”[L(Qij)]
Biy = |L(g)l

so that (4.9) may be rewritten as

tanh <%L(rﬂ)> = [[- [] tenh (%@/j) .

'cVi\i 'eVi\i

We then have

L(rji) =]Jow;-2tanh™ (Htanh @ﬁ]>>
= [Jew; - 2tanh™" log™" log (H tanh @6”))
= JJow;-2tanh tlog " log <tanh (%ﬂ”)>

3/ i

= I ai'j‘¢() (/5(@"3‘)) (4.10)

'eVi\i eVi\i

where we have defined

¢ (x) = —log [tanh (x/2)] = log <Z i_ 1)

and used the fact that ¢~! (z) = ¢ (z) when x > 0. The function is fairly well behaved, as shown
in Fig. 7, and so may be implemented by a look-up table.

7
s 45° Jine

Fig. 7. Plot of the ¢(z) function.

For Step 2, we simply divide equation (4.1) by (4.2) and take the logarithm of both sides to
obtain

L(gi;) = L(c:i) + Z L(rjn). (4.11)
jIECi\j
Step 3 is similarly modified so that

L(Q;) = L(c;) + Y L(ry). (4.12)

JjeC;

Summary of the Log-Domain SPA Decoder
1. For i =0,1,...,n — 1, initialize L (g;;) according to (4.8) for all ¢, j for which h;; = 1.
Update {L

(rj;)} using equation (4.10).
Update {L (g;
(

¢ij)} using equation (4.11).
Update {L (Q;)} using equation (4.12).

A e

Fori=0,1,....,n — 1, set
. { 1if L(Q;) <0

G = 0 else

If ¢H” = 0 or the number of iterations equals the maximum limit, stop; else, go to Step
2.

Remark. This algorithm can be simplified further for the BEC and BSC channels since the
initial LLRs (see (4.8)) are ternary in the first case and binary in the second case. See the
discussion of the min-sum decoder below.

4.4. Reduced Complexity Decoders

It should be clear from the above that the log-domain SPA algorithm has lower complexity and is
more numerically stable than the probability-domain SPA algorithm. We now present decoders
of lower complexity which often suffer only a little in terms of performance. The degradation is
typically on the order of 0.5, but is a function of the code and the channel as demonstrated in
the example below.

4.4.1. The Min-Sum Decoder [32]

Consider the update equation (4.10) for L (rj;) in the log-domain decoder. Note from the shape
of ¢ (z) that the term corresponding to the smallest /3;; in the summation dominates, so that

(2] = (o)

= min Gy, .
iev\i' Y

Thus, the min-sum algorithm is simply the log-domain SPA with Step 1 replaced by

L(Tji): H Qg - min i -

#EV;\i vEeVi\i

It can also be shown that, in the BLAWGNC case, the initialization L(g;;) = 2y;/0? may be
replaced by L(¢;;) = y; when the min-sum algorithm is employed. The advantage, of course, is
that knowledge of the noise power o is unnecessary in this case.

4.4.2. The Min-Sum-Plus-Correction-Factor Decoder [34]
Note that we can write
r;i(b) = Pr (Y ¢y =b(mod?2) | MU(V))
i"eVi\i

so that L(r;;) corresponds to the (conditional) LLR of a sum of binary rv’s. Now consider the
following general result.

Result 2. (Hagenauer et al. [33]) Consider two independent binary rv’s a; and as with
probabilities Pr (a; = b) = pi, b € {0,1}, and LLR’s L; = L(a;) = log (pio/pi1) - The LLR of the
binary sum A = a; & as, defined as

. PI'(AQ = 0)
L(A;) = log (Pr(A2 = 1)) ’
is given by | oata
L(Ay) = log (W) (4.13)

Proof.

L(AQ) = log

PI’ (1169(12—0)
Pr(a; ® as = 1)

1 P1oP20 + P11P21 >

ProP21 + P11D20)

plo P20
- log (Prio i_llp];il)

P11 P21

If more than two independent binary rv’s are involved (as is the case for r;;(b)), then the LLR
of the sum of these rv’s may be computed by repeated application of this result. For example,
the LLR of A3 = a; & ay ® az may be computed via A3 = Ay P ag and

1+ eL(A2)+L3
el(A2) | els >

L(A3) = log (

As a shorthand [33], we will write L; B Ly to denote the computation of L(A2) = L(a; @ az)
from L, and Ly; and Ly B Ly B L3 to denote the computation of L(A3) = L(a; & as & a3) from
Ly, Ly, and Ls; and so on for more variables.

We now define, for any pair of real numbers z, v,

max” (z, y) = log (* 4+ €Y) . (4.14)
which may be shown [35] to be
max*(z,y) = max (z,y) + log (1 + e—\m—yl) : (4.15)
Observe from (4.13) and (4.14) that we may write
L8 Ly = max™* (0, Ly + Ly) — max™ (Ly, L), (4.16)

so that
L1 H LQ = max (0, L1 + Lg) — Imax (Ll, Lg) + S(Ll, LQ) (417)

where s(x,y) is a so-called correction term given by
s(z,y) = log (1 + e*‘”y‘) — log (1 + e*‘w*m) :
It can be shown [34] that
max (0, Ly + Lo) — max (L1, Ly) = sign (L) sign (Lo) min (|Ly|, |Ls|)

so that
Ly B Ly = sign (Ly) sign (Ly) min (| Ly, | La|) + s(L1, L) (4.18)

which may be approximated as
Ly B Ly ~ sign (L) sign (L) min (|Ly] , | Lo|) (4.19)

since |s(z,y)| < 0.693.
Returning to the computation of L(r;;) which we said corresponds to the LLR of a sum of
binary rv’s, under the independence assumption, we may write

L(rji) = L(qu;) B ... L(gi-1,5) B L(git1,) B ... L(gn;) -

This expression may be computed via repeated application of Result 2 together with (4.17) (see
[34] for an efficient way of doing this). Observe that, if the approximation (4.19) is employed,
we have the min-sum algorithm. At the cost of slightly greater complexity, performance can be
enhanced by using a slightly tighter approximation, by substituting §(x,y) for s(x,y) in (4.18)
where [34]

¢ if lz4+y|<2and |z—y|>2|x+y|

S(x,y) =% —c if [x—y|<2and |z+y| > 2]z —y|
0 otherwise

and where ¢ on the order of 0.5 is typical.

Ezample. We consider two regular Euclidean geometry (EG) LDPC codes and their perfor-
mance with the three decoders discussed above: the (log-)SPA, the min sum, and the min sum
with a correction factor (which we denote by min-sum-c, with ¢ set to 0.5). The first code is a
cyclic rate-0.82 (4095, 3367) EG LPDC code with minimum distance bound d,,;;, > 65. Because
the code is cyclic, it may be implemented using a shift-register circuit. The H matrix for this
code is a 4095 x 4095 circulant matrix with row and column weight 64. The second code is a
(generalized) quasi-cyclic rate-0.875 (8176, 7156) EG LDPC code. Because it is quasi-cyclic,
encoding may be performed using several shift-register circuits. The H matrix for this code is
1022 x 8176 and has column weight 4 and row weight 32. It comprises eight 511 x 2044 circulant
submatrices, each with column weight 2 and row weight 8. These codes are being considered
for CCSDS standardization for application to satellite communications [37] (see also [16], [17],
and [19]).

The performance of these codes for the three decoders on a BI-AWGNC is presented in Figs.
8 and 9. We make the following observations (all measurements are with respect to a BER of
1079).

e The length-4095 code is 1.6 dB away from the rate-0.82 BI-AWGNC capacity limit. The
longer code, that is the length-8176 code, is closer to its capacity limit, only 0.9 dB away.
Regular LDPC codes of these lengths might be designed which are a bit closer to their
respective capacity limits, but one would have to resort to irregular LDPC codes to realize
substantial gains. Of course, an irregular LDPC code would in general require a more
complex encoder.

e For the length-4095 code, the loss relative to the SPA decoder suffered by the min-sum
decoder is 1.1 dB and the loss suffered by the min-sum-c decoder is 0.5 dB. For the length-
8176 code, these losses are 0.3 dB and 0.01 dB, respectively. We attribute the large losses
for the length-4095 code to the fact that its decoder relies on an H matrix with weight-64

rows. Thus, a minimum among 64 small non-negative numbers is taken at each check node
in the code’s Tanner graph, so that a value near zero is usually produced and passed to a
neighboring variable node. W

EG(4095, 3367) Performance under various decoders (50 decoding iterations)

100 3 T T T T T T
f —— capacity limit
t —— BER:SPA
[—&— FER:SPA
10k —o— BER:min-sum
E —%— FER:min-sum
[—— BER:min-sum-C
— H —— FER:min-sum-C
L
u\nlo E &
Y £
& [
< I
2 3
310 F 3
(G F
Q [
o [
a L
210_4; B
Ll F
1075? 3
10_6 | | | | | |
2 2.5 3 4 4.5 5 55 6
Eb/NO (dB)

Fig. 8. Performance of a cyclic EG(4095, 3367) LDPC code on a binary-input AWGN
channel and three decoding algorithms.

EG(8176, 7156) Performance under various decoders (50 decoding iterations)

10 3 T T T
i capacity limit
[BER:SPA

10-1E FER:SPA

BER:min-sum
FER:min-sum
BER:min-sum-C
FER:min-sum-C 3

XA RS

-7 L L
2.5 3 3.5 4 4.5
Eb/NO (dB)

Fig. 9. Performance of a quasi-cyclic EG(8176, 7156) LDPC code on a binary-input
AWGN channel and three decoding algorithms.

5. Concluding Remarks

Low-density parity-check codes are being studied for a large variety of applications, much as
turbo codes, trellis codes, and other codes were when they were first introduced to the coding
community. As indicated above, LDPC codes are capable of near-capacity performance while
admitting an implementable decoder. Among the advantages LDPC codes have over turbo
codes are: (1) they allow a parallelizable decoder, (2) they are more amenable to high code
rates, (3) they generally possess a lower error-rate floor (for the same length and rate), (4) they
possess superior performance in bursts (due to interference, fading, and so on), (5) they require
no interleavers in the encoder and decoder, and (6) a single LDPC code can be universally good
over a collection of channels [36]. Among their disadvantages are: (1) most LDPC codes have
somewhat complex encoders, (2) the connectivity among the decoder component processors can
be large and unwieldy, and (3) turbo codes can often perform better when the code length is
short. It is easy to find in the literature many of the applications being explored for LPDC
codes, including application to deep space and satellite communications, wireless (single and
multi-antenna) communications, magnetic storage, and internet packet transmission.

ACKNOWLEDGMENTS

The author would like to thank the authors of [19] and [31] for kindly providing preprints.
He would also like to thank Yifei Zhang of the University of Arizona for producing Figs. 7 and
8.

References

1]

2]

[10]
[11]

[12]

[13]

[14]

R. Gallager, “Low-density parity-check codes,” IRFE Trans. Information Theory, pp. 21-28,
Jan. 1962.

R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Information
Theory, pp. 533-547, Sept. 1981.

9

D. MacKay and R. Neal, “Good codes based on very sparse matrices,” in Cryptography and
Coding, 5th IMA Conf., C. Boyd, Ed., Lecture Notes in Computer Science, pp. 100-111,
Berlin, Germany: Springer, 1995.

D. MacKay, “Good error correcting codes based on very sparse matrices,” IEEE Trans.
Information Theory, pp. 399-431, March 1999.

N. Alon and M. Luby, “A linear time erasure-resilient code with nearly optimal recovery,”
IEEE Trans. Inf. Theory, pp. 1732-1736, Nov. 1996.

T. J. Richardson, and R. Urbanke, “Efficient encoding of low-density parity-check codes,”
IEEE Trans. Information Theory, vol. 47, pp. 638-656, Feb. 2001.

T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of capacity-approaching irregular
low-density parity-check codes,” IEEE Trans. Information Theory, vol. 47, pp. 619-637,
Feb. 2001.

M. Luby, M. Mitzenmacher, M. Shokrollahi, and D. Spielman, “Improved low-density parity
check codes using irregular graphs,” IEEE Trans. Inf. Theory, pp. 585-598, Feb. 2001.

V. Sorokine, F. R. Kschischang, and S. Pasupathy, “Gallager codes for CDMA applications:
Part 1,” IEEE Trans. Comm., pp. 1660-1668, Oct. 2000 and “Gallager codes for CDMA
applications: Part I1,” IEEE Trans. Comm., pp. 1818-1828, Nov. 2000.

D.J.C. Mackay, http://wol.ra.phy. cam.ac.uk/mackay.

S. Y. Chung, G. D. Forney, T. J. Richardson, and R. Urbanke, “ On the design of low-
density parity-check codes within 0.0045 dB of the Shannon limit,” IEEE Communications
Letters, vol 5, pp. 58 -60, Feb 2001.

M. Chiani, and A. Ventura, “Design and performance evaluation of some high-rate irregular
low-density parity-check codes,” Proc. 20001 IEEE GlobeCom Conf., pp. 990-994, Nov.
2001.

M. Yang, Y. Li, and W. E. Ryan, “Design of efficiently-encodable moderate-length high-
rate irregular LDPC codes,” Proc. 40th Annual Allerton Conference on Communication,
Control, and Computing, Champaign, IL., pp. 1415-1424, Oct. 2002.

M. Yang and W. E. Ryan, “Lowering the error rate floors of moderate-length high-rate
LDPC codes,” Proc. 2003 Int. Symp. on Inf. Theory, June-July, 2003.

[15]

[16]

[17]

[27]

[28]

[29]

M. Yang, W. E. Ryan, and Y. Li, “Design of efficiently encodable moderate-length high-rate
LDPC codes,” accepted, IEEE Trans. Comm., 2003.

Y. Kou, S. Lin, and M. Fossorier, “Low-density parity-check codes based on finite ge-
ometries: a rediscovery and new results,” IFEE Trans. Information Theory, vol. 47, pp.
2711-2736, Nov. 2001.

R. Lucas, M. Fossorier, Y. Kou, and S. Lin, “Iterative decoding of one-step majority-logic
decodable codes based on belief propagation,” IFEE Trans. Comm., pp. 931-937, June
2000.

S. Lin and D. Costello, Error-Control Coding: Fundamentals and Applications, Prentice-
Hall, 1983.

H. Tang, J. Xu, S. Lin, and K. Abdel-Ghaffar, “Codes on finite geometries,” submitted to
IEEFE Trans. Inf. Theory, 2002.

D. Divsalar, H. Jin, and R. McEliece, Proc. 36th Annual Allerton Conf. on Comm., Control,
and Computingce, “Coding theorems for turbo-like codes,” , pp. 201-210, Sept. 1998.

H. Jin, A. Khandekar, and R. McEliece, “Irregular repeat-accumulate codes,” Proc. 2nd.
Int. Symp. on Turbo Codes and Related Topics, Brest, France, pp. 1-8, Sept. 4, 2000.

R. Narayanaswami, Coded Modulation with Low-Density Parity-Check Codes, M.S. thesis,
Texas A&M University, 2001, Chapter 7.

J. Fan, Constrained coding and soft iterative decoding for storage, Ph.D. dissertation, Stan-
ford University, December 1999. (See also Fan’s Kluwer monograph by the same title.)

J. Fan, “Array codes as low-density parity-check codes,” 2nd Int. Symposium on Turbo
Codes and Related Topics, Brest, France, pp. 543-546, Sept. 2000.

E. Eleftheriou and S. Olger, “Low-density parity-check codes for digital subscriber lines,”
Proc. 2002 Int. Conf. on Comm., pp.1752-1757., April-May, 2002.

D. MacKay and M. Davey, “Evaluation of Gallager codes for short block length and high
rate applications,” in Codes, Systems, and Graphical Models: Volume 123 of IMA Volumes
in Mathematics and its Applications, pp. 113-130, Spring-Verlag, New York, 2000.

B. Vasic, “Structured iteratively decodable codes based on Steiner systems and their ap-
plication to magnetic recording,” Proc. 2001 IEEE GlobeCom Conf., pp. 2954-2958, Nov.
2001.

B. Vasic, “Combinatorial constructions of low-density parity-check codes for iterative de-
coding,” Proc. 2002 IEEE Int. Symp. Inf. Theory, p. 312, June/July 2002,

S. Johnson and S. Weller, “Construction of low-density parity-check codes from Kirkman
triple systems,” Proc. 2001 IEEE GlobeCom Conf., pp. 970-974, Nov. 2001.

[30] J. Pearl, Probabilistic Reasoning in Intelligent Systems, San Mateo, CA: Morgan Kaufmann,
1988.

)

[31] H. Xiao and A. Banihashemi, “Message-passing schedules for decoding LDPC codes,” sub-

mitted to IEEE Trans. Comm., 2003.

[32] N. Wiberg, Codes and Decoding on General Graphs, Ph.D. dissertation, U. Linkoping,
Sweden, 1996.

[33] J. Hagenauer, E. Offer, and L. Papke, "Iterative decoding of binary block and convolutional
codes,” IEEFE Trans. Inf Theory, pp. 429-445, March 1996.

[34] X-Y. Hu, E. Eleftherious, D-M. Arnold, and A. Dholakia, “Efficient implementation of the
sum-product algorithm for decoding LDPC codes,” Proc. 2001 IEEE GlobeCom Conf., pp.
1036-1036E, Nov. 2001.

[35] A. Viterbi, “An intuitive justification and a simplified implementation of the MAP decoder
for convolutional codes,” IEEE JSAC, pp. 260-264, Feb. 1998.

[36] C. Jones, A. Matache, T. Tian, J. Villasenor, and R. Wesel, “The universality of LDPC
codes on wireless channels,” to appear, Proc. 2003 IEEE Milcom conf., Oct. 2003.

[37] W. Fong, “White paper for LDPC codes for CCSDS channel Blue Book,” NASA GSFC
White Paper submitted to the Panel 1B CCSDS Standards Committee, Oct. 2002.

